5-1
 Midsegments of Triangles

Objective To use properties of midsegments to solve problems

Check with your classmates. Do they get the same results?

MATHEMATICAL PRACTICES

Lesson Vocabulary
midsegment of a triangle

In the Solve It, $\overline{L N}$ is a midsegment of $\triangle A B C$. A midsegment of a triangle is a segment connecting the midpoints of two sides of the triangle.

Essential Understanding There are two special relationships between a midsegment of a triangle and the third side of the triangle.

Here's Why It Works You can verify that the Triangle Midsegment Theorem works for a particular triangle. Use the following steps to show that $\overline{D E} \| \overline{A B}$ and that $D E=\frac{1}{2} A B$ for a triangle with vertices at $A(4,6), B(6,0)$, and $C(0,0)$, where D and E are the midpoints of $\overline{C A}$ and $\overline{C B}$.

Step 1 Use the Midpoint Formula, $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$, to find the coordinates of D and E.

The midpoint of $\overline{C A}$ is $D\left(\frac{0+4}{2}, \frac{0+6}{2}\right)=D(2,3)$.
The midpoint of $\overline{C B}$ is $E\left(\frac{0+6}{2}, \frac{0+0}{2}\right)=E(3,0)$.
Step 2 To show that the midsegment $\overline{D E}$ is parallel to the side $\overline{A B}$, find the slope, $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, of each segment.

$$
\text { slope of } \begin{aligned}
\overline{D E} & =\frac{0-3}{3-2} & \text { slope of } \overline{A B} & =\frac{0-6}{6-4} \\
& =\frac{-3}{1} & & =\frac{-6}{2} \\
& =-3 & & =-3
\end{aligned}
$$

Step 3 To show $D E=\frac{1}{2} A B$, use the Distance Formula, $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ to find $D E$ and $A B$.

$$
\begin{array}{rlrl}
D E & =\sqrt{(3-2)^{2}+(0-3)^{2}} & A B & =\sqrt{(6-4)^{2}+(0-6)^{2}} \\
& =\sqrt{1+9} & & =\sqrt{4+36} \\
& =\sqrt{10} & & =\sqrt{40} \\
& & =2 \sqrt{10}
\end{array}
$$

Since $\sqrt{10}=\frac{1}{2}(2 \sqrt{10})$, you know that $D E=\frac{1}{2} A B$.

Think

How do you identify a midsegment? Look for indications that the endpoints of a segment are the midpoints of a side of the triangle.

Problem 1 Identifying Parallel Segments

What are the three pairs of parallel segments in $\triangle D E F$?

$\overline{R S}, \overline{S T}$, and $\overline{T R}$ are the midsegments of $\triangle D E F$. By the Triangle Midsegment Theorem, $\overline{R S}\|\overline{D F}, \overline{S T}\| \overline{E D}$, and $\overline{T R} \| \overline{F E}$.

Got lt? 1. a. In $\triangle X Y Z, A$ is the midpoint of $\overline{X Y}, B$ is the midpoint of $\overline{Y Z}$, and C is the midpoint of $\overline{Z X}$. What are the three pairs of parallel segments?
b. Reasoning What is $m \angle V U O$ in the figure at the right? Explain your reasoning.

Problem 2 Finding Lengths

Plan

Which relationship stated in the Triangle Midsegment Theorem should you use? You are asked to find lengths, so use the relationship that refers to the lengths of a midsegment and the third side.

In $\triangle Q R S, T, U$, and B are midpoints. What are the lengths of $\overline{T U}, \overline{U B}$, and $\overline{Q R}$?

Use the relationship
length of a midsegment $=\frac{1}{2}$ (length of the third side)
to write an equation about the length of each midsegment.

$$
\begin{array}{rlrl}
T U & =\frac{1}{2} S R & U B & =\frac{1}{2} Q S \\
& =\frac{1}{2}(40) & & T B
\end{array}=\frac{1}{2} Q R(50) \quad 30=\frac{1}{2} Q R
$$

Got lt? 2. In the figure at the right, $A D=6$ and $D E=7.5$. What are the lengths of $\overline{D C}, \overline{A C}, \overline{E F}$, and $\overline{A B}$?

You can use the Triangle Midsegment Theorem to find lengths of segments that might be difficult to measure directly.

Problem 3 Using a Midsegment of a Triangle STEM

Why does the geologist find the length of $\overline{C D}$?
$\overline{C D}$ is a midsegment of $\triangle A E B$, so the geologist can use its length to find $A B$, the distance across the sinkhole.

Environmental Science A geologist wants to determine the distance, $A B$, across a sinkhole. Choosing a point E, outside the sinkhole, she finds the distances $A E$ and $B E$. She locates the midpoints C and D of $\overline{A E}$ and $\overline{B E}$ and then measures $\overline{C D}$. What is the distance across the sinkhole?
$C D$ is a midsegment of $\triangle A E B$.

$$
\begin{aligned}
C D & =\frac{1}{2} A B & & \triangle \text { Midsegment Thm. } \\
46 & =\frac{1}{2} A B & & \text { Substitute } 46 \text { for } C D . \\
92 & =A B & & \text { Multiply each side by } 2 .
\end{aligned}
$$

The distance across the sinkhole is 92 ft .

Got lt? 3. $\overline{C D}$ is a bridge being built over a lake, as shown in the figure at the right. What is the length of the bridge?

Lesson Check

Do you know HOW?

Use the figure at the right for Exercises 1-3.

1. Which segment is parallel to $\overline{J K}$?
2. If $L K=46$, what is $N M$?
3. If $J K=5 x+20$ and $N O=20$, what is the value of x ?

Do you UNDERSTAND?

4. Vocabulary How does the term midsegment describe the segments discussed in this lesson?
5. Reasoning If two noncollinear segments in the coordinate plane have slope 3 , what can you conclude?
6. Error Analysis A student sees this figure and concludes that $\overline{P L} \| \overline{N O}$. What is the error in the student's reasoning?

Practice and Problem-Solving Exercises

Identify three pairs of parallel segments in each diagram.
See Problem 1.

8.

Name the segment that is parallel to the given segment.
9. $\overline{A B}$
10. $\overline{B C}$
11. $\overline{E F}$
12. $\overline{C A}$
13. $\overline{G E}$
14. $\overline{F G}$

Points E, D, and H are the midpoints of the sides of $\triangle T U V . U V=80, T V=100$, and $H D=80$.
15. Find $H E$.
16. Find $E D$.
17. Find $T U$.
18. Find $T E$.

Algebra Find the value of x.
19.

20.

21.

22.

23.

24.

25. Surveying A surveyor needs to measure the distance $P Q$ across the lake. Beginning at point S, she locates the midpoints of $\overline{S Q}$ and $\overline{S P}$ at M and N. She then measures $\overline{N M}$. What is $P Q$?
26. Kayaking You want to paddle your kayak across a lake. To determine how far you must paddle, you pace out a triangle, counting the number of strides, as shown.
a. If your strides average 3.5 ft , what is the length of the longest side of the triangle?
b. What distance must you paddle across the lake?

27. Architecture The triangular face of the Rock and Roll Hall of Fame in Cleveland, Ohio, is isosceles. The length of the base is 229 ft 6 in . Each leg is divided into four congruents parts by the red segments. What is the length of the white segment? Explain your reasoning.
28. Think About a Plan Draw $\triangle A B C$. Construct another triangle so that the three sides of $\triangle A B C$ are the midsegments of the new triangle.

- Can you visualize or sketch the final figure?
- Which segments in your final construction will be parallel?

29. Writing In the figure at the right, $m \angle Q S T=40$. What is $m \angle Q P R$? Explain how you know.
30. Coordinate Geometry The coordinates of the vertices of a triangle are $E(1,2), F(5,6)$, and $G(3,-2)$.
a. Find the coordinates of H, the midpoint of $\overline{E G}$, and J, the midpoint of $\overline{F G}$.

b. Show that $\bar{H} \| \overline{E F}$.
c. Show that $H J=\frac{1}{2} E F$.

X is the midpoint of $\overline{U V} . Y$ is the midpoint of $\overline{U W}$.

31. If $m \angle U X Y=60$, find $m \angle V$.
32. If $m \angle W=45$, find $m \angle U Y X$.
33. If $X Y=50$, find $V W$.
34. If $V W=110$, find $X Y$.

$\overline{I J}$ is a midsegment of $\triangle F G H . I J=7, F H=10$, and $G H=13$. Find the perimeter of each triangle.
35. $\triangle I J H$
36. $\triangle F G H$

37. Kite Design You design a kite to look like the one at the right. Its diagonals measure 64 cm and 90 cm . You plan to use ribbon, represented by the purple rectangle, to connect the midpoints of its sides. How much ribbon do you need?
(A) 77 cm
(C) 154 cm
(B) 122 cm
(D) 308 cm

Algebra Find the value of each variable.
38.

39.

40.

41.

Use the figure at the right for Exercises 42-44.
42. $D F=24, B C=6$, and $D B=8$. Find the perimeter of $\triangle A D F$.
43. Algebra If $B E=2 x+6$ and $D F=5 x+9$, find $D F$.
44. Algebra If $E C=3 x-1$ and $A D=5 x+7$, find $E C$.

45. Open-Ended Explain how you could use the Triangle Midsegment Theorem as the basis for this construction: Draw $\overline{C D}$. Draw point A not on $\overline{C D}$. Construct $\overline{A B}$ so that $\overline{A B} \| \overline{C D}$ and $A B=\frac{1}{2} C D$.
46. Reasoning In the diagram at the right, K, L, and M are the midpoints of the sides of $\triangle A B C$. The vertices of the three small purple triangles are the midpoints of the sides of $\triangle K B L, \triangle A K M$, and $\triangle M L C$. The perimeter of $\triangle A B C$ is 24 cm . What is the perimeter of the shaded region?

47. Coordinate Geometry In $\triangle G H J, K(2,3)$ is the midpoint of $\overline{G H}, L(4,1)$ is the midpoint of $\overline{H J}$, and $M(6,2)$ is the midpoint of $\overline{G J}$. Find the coordinates of G, H, and J.
48. Complete the Prove statement and then write a proof. Proof Given: In $\triangle V Y Z, S, T$, and U are midpoints.

Prove: $\triangle Y S T \cong \triangle T U Z \cong \triangle S V U \cong$?

Apply What You've Learned

Look at the trail map from page 283, shown again below.

Select all of the following that are true. Explain your reasoning.
A. In $\triangle D G L, \overline{B L}$ is a midsegment.
B. In $\triangle D G L, \overline{B K}$ is a midsegment.
C. $\overline{B K}$ is parallel to $\overline{D L}$.
D. $\overline{B L}$ is parallel to $\overline{G K}$.
E. The length of $\overline{B K}$ is half the length of $\overline{B L}$.
F. The length of $\overline{D L}$ is twice the length of $\overline{B K}$.
G. $\overline{D L}$ is the shortest side of $\triangle D G L$.

